Photoemission spectroscopy is a powerful experimental technique used to study the elemental and electronic structure of materials in various states such as solids, liquids and gases. The application covers a wide range of scientific fields, with the main focus on surface chemistry and materials science. The most common forms of photoemission spectroscopy (PES) are X-ray photoelectron spectroscopy (XPS), Ultra-Violet photoelectron spectroscopy (UPS) and Angle Resolved photoelectron spectroscopy (ARPES). Let’s explore some of the fundamental aspects of this powerful tool.
A Nickel-Iron Alloy is a type of magnetic shielding material that is often used in electron spectroscopy chambers to minimise external magnetic interference. Electron spectroscopy techniques, such as X-ray photoelectron spectroscopy (XPS) or Auger electron spectroscopy (AES), are highly sensitive to magnetic fields. External magnetic fields can distort the trajectories of electrons, leading to inaccuracies in the measurements and affecting the overall performance of the spectroscopy system.